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Abstract
By properly generalizing Nozières’ Fermi liquid theory, we construct a
Hamiltonian approach to the scattering of conduction electrons off a spin-1/2
impurity in the overscreened Kondo regime as T → 0. We derive the S-matrix
at the interacting fixed point, and the corresponding phase shifts, together with
leading energy corrections to the unitary limit. We apply our results to obtain
the low-temperature dependence of the two-channel Kondo conductance, and
we relate it to possible transport experiments in a quantum dot.

1. Introduction

The Kondo effect in metals containing magnetic impurities consists of an ‘anomalous’
minimum in the resistivityρ(T ), as the temperature T drops below the ‘Kondo temperature’ TK.
The minimum is due to antiferromagnetic scattering of conduction electrons off the localized
magnetic impurities [1]. Quite recently [2, 3], the signature of Kondo interaction has been
found in transport experiments across a quantum dot (CD) at a Coulomb blockade (CB). At CB,
the QD is expected to be insulating,due to the discreteness of its levels [3]. Nevertheless, within
a CB valley, the linear DC conductance may saturate at low temperatures. As T > TK, the
conductance exhibits the typical logarithmic raise [4]. When T drops below TK, it saturates
to its unitary limit, G = 2e2/h. Below TK, a perturbative approach in the coupling is not
feasible.

The single impurity Kondo effect is classified according to the spin s of the impurity and
to the number of channels κ of itinerant electrons involved in the scattering. Indeed, electrons
scattering off the impurity may be labelled by quantum numbers other than the spin (for
instance, angular momentum) [5]. In spite of the fact that in the perturbative temperature region
there are no qualitative differences between the one-channel and many-channel effect [6],
because of the different nature of the corresponding ground states (GS), deep differences arise
in the unitary limit, depending on κ and s. In particular:
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• If κ = 2s, as T is lowered down to 0, the flow of the coupling strength between the
impurity magnetic moment and the spin of itinerant electrons runs all the way towards an
infinite-coupling fixed point. At the fixed point, the impurity spin is fully screened, and
the localized magnetic moment effectively disappears. The impurity rather works as a
spinless scattering centre in the Fermi sea of the itinerant electrons, and double occupancy
at the impurity site is forbidden (‘Noziéres picture’ [7]). This is the most common case:
a QD with an odd number of electrons behaves as a spin-1/2 impurity, interacting with
one channel of conduction electrons from the Fermi sea of the contacts.

• If κ < 2s, the system is ‘underscreened’. A residual magnetic moment survives on the
impurity, even at T = 0. This moment interacts ferromagnetically with the spins of
the itinerant electrons. T = 0 is again an attractive infinite-coupling fixed point and,
accordingly, the system is described by Fermi liquid (FL) theory. An example of this case
occurs in a two-dimensional QD in a magnetic field at a singlet–triplet level crossing [8–
10].

• If κ > 2s and the exchange coupling is the same for both channels, the impurity magnetic
moment gets ‘overscreened’. An effective residual magnetic moment survives on the
impurity, antiferromagnetically interacting with the spin of itinerant electrons. As a
consequence, the infinite-coupling fixed point is now repulsive, as well as the non-
interacting fixed point. The system flows toward an intermediate, finite-coupling fixed
point, where FL theory has been predicted to break down [11].
The prototype model for this case is the two-channel spin 1/2 Kondo (2CK) model, whose
low-temperature behaviour will be the subject of this paper. Our approach extends the
Nozières’ picture of the one channel Kondo fixed point [7] to the 2CK case. This allows us
to highlight the non-Fermi liquid (NFL) properties within a scattering matrix (S-matrix)
approach, which is particularly suitable to studying the conductance across a QD.

The overscreened Kondo effect has been hypothesized to be the driving mechanism of
low-energy physics of several systems, although, depending on the physical system involved,
the relevant degree of freedom of the impurity may not be its spin, but some orbital angular
momentum labelling its energy levels (‘orbital Kondo’) [12].

For instance, the overscreened Kondo effect has been predicted to possibly take place
in glassy metals [13]. Whether it really arises in these systems or not is still a debated
question [14]. A two channel Kondo behaviour has been invoked in an experiment by Ralph
and Buhrman on clean Cu point contacts [15]. A different route toward the realization of
the two-channel Kondo effect in a controlled way has been recently proposed in vertical QDs
at a Coulomb blockade [16], or in similar mesoscopic devices [17, 18]. According to the
predictions concerning single impurity Kondo models, as T < TK, the temperature dependent
corrections to the conductance should display a crossover from log-like dependence on T to a
dependence on (T/TK)

2 for the perfectly screened case, and on
√

T/TK for the overscreened
case. In fact, the crossover to a T 2-dependence has been experimentally seen in a vertical
QD with few electrons [4]. No experimental evidence for 2CK in dots has been produced
yet.

On the theoretical side, due to its connections to many condensed matter problems, the
2CK model has been studied with a number of different techniques [19]. Finite-T corrections
have been derived by means, for instance, of Bethe-ansatz like exact solutions [20]. Ludwig
and Affleck applied conformal field theory (CFT) techniques to determine finite-T corrections
to the unitary limit, Wilson ratios and several exact results concerning Green functions [11].
Numerical renormalization group (RG) techniques applied to multichannel Kondo models have
a long history [21–24]. Abelian bosonization [25] and subsequent refermionization [26] has
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been used as well as Majorana fermions [27] to study the strongly coupled states by removing
the unscattered degrees of freedom. Functional integral methods, including the slave boson
technique [28] and the Coulomb gas approach, have also been applied to 2CK [29].

A number of approaches have been applied to describe non-equilibrium properties
such as nonlinear conductance, mostly in connection with the Anderson impurity
model [2]. These range from the numerical renormalization group, to the non-crossing
approximation (NCA) [30, 31], perturbative functional integral methods [32] and perturbative
renormalization group methods in real time [33].

In this paper we study the 2CK model close to the fixed point, by applying bosonization
and refermionization of the quantum particle fields. We consider a spin 1/2 impurity at x = 0,
antiferromagnetically coupled to a right (R) and a left (L) one dimensional non-interacting
Fermi sea, with an extra indexα = 1, 2, which labels the two conduction channels. We employ
a scattering approach that is appropriate to study the unitary limit of the conductance at T = 0.
In particular, this will allow us to calculate both fixed point conductance and the leading
temperature dependent corrections. By removing the degrees of freedom not interacting with
the impurity in the unitary limit,we move the NFL fixed point to infinite coupling. Accordingly,
we apply a perturbative strong coupling expansion. We first derive the properties of the GS at
the fixed point in the bosonic representation using the lattice version of the model. Next, going
back to fermions in the continuum limit, we obtain a fermionic representation for the fixed
point S matrix, and get the unitary limit of the conductance, by using the Landauer formula.
Finally, we derive finite T corrections to the DC conductance in bosonic coordinates. In the
conclusions we propose a connection between this model and a possible realization of the 2CK
conductance in a QD [16].

Our representation of the S matrix does not suffer from the ‘unitarity paradox’, since,
following Ludwig and Maldacena, we introduce a ‘spin-flavour’ quantum number in the
bosonic representation [34]. Indeed, in the unitary limit, the spin flavour is the only quantum
number that is alleged to change upon scattering of the impurity. However, some care has to
be used when describing such a dynamics in fermionic coordinates.

The paper is organized as follows:
In section 2 we introduce the Hamiltonian with linearized bands close to the Fermi points

and the bosonic representation of the relevant quantum fields. Because of the redundancy, due
to the spin-flavour field, we define two different bosonic representations for the same fermionic
field, which we refer to as I and II.

In section 3 we construct the fixed point impurity GS by reformulating in bosonic
coordinates the regularization scheme proposed in [27].

In section 4 we go back to the fermionic representation. Once we have identified the
physical states, we implement Nozières’ scheme, by deriving a one-body potential for the
fixed point fermionic Hamiltonian. This rephrases in fermionic coordinates the spin-flavour
bosonic field dynamics due to the scattering off the impurity. Next, we use the Hamiltonian we
derive, to calculate the Green functions at the fixed point. The one-particle Green functions
provide us with the S matrix elements in the I, II representation. Our approach gives the correct
result for the phase shift for each fermion field, given by ±π/4.

In sections 5 and 6 we employ a Schrieffer–Wolff-like transformation to derive the
corrections to the fixed point Hamiltonian. In particular, in section 5 we show that the
first correction, although irrelevant for what concerns the fixed point dynamics, selects the
appropriate physical states at any point. The unitary limit for the conductance follows
immediately, provided the degrees of freedom are properly counted. In section 6 we derive
the first irrelevant operator, giving an energy dependent correction to the phase shifts in the
S-matrix and, consequently, a T -dependent correction to the conductance.
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In section 7 we summarize our conclusions and relate our results to the existing
experimental quest for 2CK in QDs.

Mathematical details of the derivation are reported in appendices A–D.

2. The two-channel Kondo Hamiltonian: low-energy fermion modes and bosonization

In this section we introduce the model Hamiltonian for lead electrons in the overscreened
Kondo effect. Since in the following we will need the lattice version of the Hamiltonian, we
start by introducing the lattice version of the theory. We will propose the fermionic and the
bosonic version of the model Hamiltonian.

On a system of size L, the lattice kinetic energy in Fourier space is given by:

HT =
∑
k�;σα

[µ− 4t cos(k�a)]c†
σα(k�)cσα(k�) (1)

(the cs are fermionic operators in momentum space, k� = 2π�/L; � = 0 · · · N − 1, µ is the
chemical potential, a is the lattice step, α is the channel index).

In the long wavelength limit, expanding about the two Fermi points, one gets the effective
Hamiltonian:

HT = −iv f

∫
dx

∑
σα

{
φ

†
R;σα(x)

d

dx
φR;σα(x)− φ

†
L;σα(x)

d

dx
φL;σα(x)

}
, (2)

where v f = 4ta sin(ak+
F)/2π , and:

φL/R,σα(x) =
∫

d p eipxφL/R,σα(p). (3)

The isotropic lattice Kondo interaction Hamiltonian is given by:

H 2CK
K = JSd · [�σ1(0) + �σ2(0)], (4)

where �σα(x) = 1
2

∑
σσ ′,α c†

σα(x)�τσσ ′cσ ′α(x) and Sd is the spin 1/2 impurity located at x = 0.
By using the linear combinations:

φe;σα(x) = 1√
2

[φR;σα(x) + φL;σα(−x)]

φo;σα(x) = 1√
2

[φR;σα(x)− φL;σα(−x)],
(5)

H 2CK
K takes the form:

H 2CK
K = JSd · [�σe;1(0) + �σe;2(0)], (6)

where

�σe;α(x) = 1
2

∑
σσ ′

φ
†
e;σα(x)�τσσ ′φe;σ ′α(x),

that is, only the ‘e’-fields enter the Kondo interaction Hamiltonian. As a consequence, we may
study the Kondo dynamics by taking into account only the chiral fields φe;σα. From now on,
we will drop the suffix e from the various field operators.

In order to properly deal with the interacting fields, we bosonize φσα [11]. Since we have
four independent fermionic fields, we need the same number of independent bosonic fields,
	σα. Therefore, following [34], we define:

φσα(x) = ησα:e−i	σα(x):, (7)

where ησα are real Klein factors, obeying the anticommutator algebra {ησα, ητβ } = δστ δαβ .
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It is possible to introduce the densities of physical quantities starting from the linear
combinations [34, 26]:

	ch(x) =
∑
ασ

	ασ (x); 	sp(x) =
∑
ασ

σ	ασ (x); 	fl(x) =
∑
ασ

α	ασ (x). (8)

(In equation (8) and in the following, whenever we use σ and α as coefficients we mean +,−1,
when σ = ↑,↓, and +,−1, when α = 1, 2.)

The densities of charge, spin and flavour, ρch, ρsp, ρfl, are given by:

ρch/sp/fl(x) = 1

2π

d

dx
	ch/sp/fl(x).

Out of the fields 	ασ , a fourth bosonic field, the ‘spin-flavour’ field, independent of the first
three ones, may be constructed, given by:

	sf(x) =
∑
ασ

σα	ασ (x). (9)

The free dynamics of the bosonic fields 	 is given by the bosonized version of equation (2),
that is:

HBos = v f

4π

∫
dx

∑
X=ch,sp,fl,sf

(
d	X

dx

)2

. (10)

Notice that the spin-flavour quantum number appears to be ‘redundant’, as the state of
the lead electrons is fully determined by charge, spin and flavour. Indeed, it is possible to
realize two ‘inequivalent’ representations of the fields φσα in terms of the four fields 	X

(X = ch, sp,fl, sf). The former representation, which we will refer to as φI
σα, is given by:

φI
σα(x) = ησα:e− i

2 [	ch(x)+σ	sp(x)+α	fl(x)+ασ	sf (x)]:. (11)

The latter representation, instead, is defined by:

φII
σα(x) = ξσα:e− i

2 [	ch(x)+σ	sp(x)+α	fl(x)−ασ	sf (x)]:. (12)

The ‘Klein-like’ factors ξσα are determined by the requirement that the fields in the two
representations anticommute with each other. Such a requirement is achieved upon defining:

ξσα ≡ e−i π2 Ñσα ησα,

where the operators Ñσα are given by:

Ñσα =
∫

dx [ρch(x) + σρsp(x) + αρfl(x)− ασρsf (x)]

(notice the unusual definition of ξ , which involves non-real fermionic factors. Nevertheless,
both I and II representations provide perfectly legitimate fermionic fields).

In appendix A we prove that fields within the same representations obey the usual
anticommutation relations, while fields from different representations anticommute with each
other, that is:

{φa
σα(x), φ

b†
τβ(y)} = δabδστ δαβδ(x − y) (13)

(a, b = I, II).
We now start the derivation of the effective Hamiltonian in the unitary limit.
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3. Fixed point impurity ground state in bosonic coordinates

To derive the effective theory for the spin-1/2 overscreened Kondo system in the unitary
limit, we use the regularization scheme introduced in [27]. Such an approach allows for
moving the intermediate coupling fixed point towards infinite coupling. In particular, we
will reformulate the approach used in [27] in terms of bosonic fields, rather than in terms of
Majorana fermionic fields. Our formalism allows for a direct derivation of the subleading,
finite temperature/frequency corrections to the fixed-point dynamics.

In bosonic coordinates, the Kondo interaction Hamiltonian is given by:

H 2CK
K = J

{
S+

d :ei	sp(0): :cos(	sf(0)): + S−
d :e−i	sp(0): :cos(	sf(0)): + Sz

d

1

2π

d	sf(0)

dx

}
≡ JSd · [ ��A(0) + ��B(0)], (14)

where the spin densities ��A/B(x) are given by:

��z
A/B (x) = 1

4π

d

dx
[	sp ±	sf ](x); ��±

A/B(x) = 1√
2

:e±i[	sp±	sf ](x):. (15)

In appendix A we prove that both ��A(x) and ��B(x) are SU(2) spin-1/2 operators, and
show that the corresponding spinors at a point x are realized as:

|σ, A〉x = :ei σ2 [	sp+	sf ](x): |bvac〉,
and

|σ, B〉x = :ei σ2 [	sp−	sf ](x): |bvac〉. (16)

The doublet |σ, A/B〉x provides a spinor representation of the SU(2) group generated by

��A/B =
∫

dy ��A/B (y). (17)

Also, we obtain

��A|σ, B〉x = ��B |σ, A〉x = 0, (18)

because

[ ��A, e± i
2 [	sp+	sf ](x)] = [ ��B, e± i

2 [	sp−	sf ](x)] = 0.

Equation (18) states that, if at a point x the spin density associated to ��A is 	= 0, then, at the
same point, the spin density associated to ��B is = 0, and vice versa.

Such a statement is the key argument used in [27] to argue that,within such a regularization
scheme, the finite-coupling fixed point is actually moved to an infinite-coupling point. The
argument is that, since it is not possible to have at the same point both spin densities different
from 0, it is also impossible to produce a more-than-1/2-spin composite at the origin to
overscreen the impurity spin. Therefore, the unstable overscreened fixed point disappears and
NFL-behaviour is reached at an infinitely strong coupled fixed point, where the impurity spin
will be fully screened in a localized spin singlet. Such a singlet must be formed either between
Sd and ��A(0), or between Sd and ��B(0). Therefore, at the fixed point the system can lie within
either one of the two singlets |Sin, A, {�}〉, |Sin, B, {�}〉, given by:

|Sin, A, {�}〉 =
(

2πη

L

) 1
4 1√

2
{|⇑〉 ⊗ |↓, A, {�}〉 − |⇓〉 ⊗ |↑, A, {�}〉}

|Sin, B, {�}〉 =
(

2πη

L

) 1
4 1√

2
{|⇑〉 ⊗ |↓, B, {�}〉 − |⇓〉 ⊗ |↑, B, {�}〉},

(19)
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where η is the convergence factor (see appendix A for details) and |⇑〉, |⇓〉 are the two
impurity states with opposite spin polarizations. |↑, A/B, {�}〉, and |↓, A/B, {�}〉 are states
of conduction electrons with an ↑ or a ↓ A/B particle at x = 0, respectively, the state of all
the other delocalized particles (globally denoted by {�}) being unspecified for the time being.

Let us, now, define the operator Qx :

Qx =
(

2πη

L

) 1
2

[:ei	sf (x): + :e−i	sf (x):]. (20)

It is straightforward to verify that [Qx]2 = 1, ∀x . Therefore, its eigenvalues are ±1.
Since [Q0, H 2CK

K ] = 0,where Q0 = Qx=0 one may build simultaneous eigenstates of the
two operators, given by:

|Sin,+, {�}〉 = 1√
2

[|Sin, A, {�}〉 + i|Sin, B, {�}〉]

|Sin,−, {�}〉 = 1√
2

[|Sin, A, {�}〉 − i|Sin, B, {�}〉].
(21)

Notice that these states are not eigenstates of the spin-flavour.
The construction will be repeated in the next section, where we switch back to the fermion

representation.

4. Fixed point fermionic S-matrix

In this section we reformulate the results of section 3 in fermionic coordinates. We will
eventually get to the formula for the appropriate scattering potential in the unitary limit.
Finally, we will take the continuum limit of our result, and derive the single-particle S-matrix
for scattering of the impurity.

In bosonic coordinates, the two different representations for the lattice fermionic fields
cσα(x), which we will refer to as cI/II

σα (x), are given by:

c†,I/II
σα (x) =

(
2πη

L

) 1
2

:e
i
2 [	ch(x)+σ	sp(x)+α	sf (x)±ασ	sf (x)]:. (22)

In terms of cI/II
σα (x), one may write down the relevant operators acting on one-particle

states: the identity operator at point x

1x =
∑
σα

[c†,I
σα(x)c

I
σα(x) + c†,II

σα (x)c
II
σα(x)], (23)

and

Qx = i
∑
σα

(σα)[c†,I
σα(x)c

II
σα(x)− c†,II

σα (x)c
I
σα(x)]. (24)

At a point x , Qx swaps representations I and II with each other. Moreover, since in
bosonic coordinates, at x = 0, [Q0, H 2CK

K ] = 0, we require the same thing to hold in fermionic
coordinates.

Following Nozières’ approach, we construct an effective fixed point Hamiltonian by
introducing an infinite-strength repulsive potential scattering at the origin, and by making
it commute with Q0. Therefore, it is given by:

Vfp = P0

{
lim
λ→∞

[
λ

∑
σα;a

c†a
σα(0)c

a
σα(0)

]
P0

}
, (25)

where P0 = 1
2 [10 + Q0], and λ is the strength of the interaction.



6082 D Giuliano and A Tagliacozzo

Figure 1. Pictorial sketch of the even–odd decomposition of the scattering process in the (x, t)
plane5. The heavy dot at the centre is the scattering centre located at x = 0. Ingoing and outgoing
single particle wavefunctions are shown. One of the chiral components in the scattering has been
boxed.

We obtain the unitary Hamiltonian by adding the lattice kinetic energy term to Vfp. By
taking the continuum limit of the corresponding operator, one gets the ‘Nozières like’ fixed
point Hamiltonian. At finite λ, this is given by:

H 2CK
λ ≈

∫
dx

∑
σα

{( φ†,I
σα(x) φ†,II

σα (x) )

×
[
−iv f

d

dx
·
(

1 0
0 1

)
+ λδ(x) ·

(
1 −i(σα)

i(σα) 1

)](
φI
σα(x)

φII
σα(x)

)}
. (26)

This Hamiltonian envisages a scattering process for the even component of the field, which
is represented pictorially by the boxed field in figure 1.

At x = 0 the projected scattering potential exchanges the two representations.
Accordingly, H 2CK

λ is diagonal in the representation index everywhere, except at the origin. In
the following, we use H 2CK

λ to derive the fixed point one-particle Green functions. From the
Green functions we derive the fixed point S matrix, which we will eventually use to compute
the fixed point conductance.

Let us write down the equations of motion for imaginary time one-particle Green functions,
derived from the chiral Hamiltonian of equation (26). For simplicity, here we just consider
σ = ↑ and α = 1. The Green functions are defined as (a, b = I, II):

Ga,b
↑1 (x, τ ; x ′, τ ′) = θ(τ − τ ′)Tr

[
e−βH

Z φa
↑1(x, τ )φ

†,b
↑1 (x

′, τ ′)
]

− θ(τ ′ − τ )Tr

[
e−βH

Z φ
†,b
↑1 (x

′, τ ′)φa
↑1(x, τ )

]
, (27)

where β = 1/kBT and Z is the partition function.

5 For a one-dimensional elastic channel with momentum k, the scattering amplitudes f are defined by

	k (x) =
{

eikx + f>eikx x � 0

eikx + f<e−ikx x � 0.

The even and odd parity components (l = e and l = o), together with the corresponding amplitudes, are defined by:

	k (x) = [cos(kr) + feeikr ] + sgn(x)[i sin(kr) + foeikr ] ≡ ψk,e(r) + sgn(x)ψk,o(r),

where r ≡ |x| and fe = 1
2 ( f< + f>) and fo = 1

2 ( f> − f<).
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The coupled equations of motion for GI,I
↑1 and GII,I

↑1 read:(
∂

∂τ
+ iv f

∂

∂x

)
GI,I

↑1(x, τ ; x ′, τ ′) = δ(τ − τ ′)δ(x − x ′)

− λδ(x)[GI,I
↑1(x, τ ; x ′, τ ′) + iGII,I

↑1 (x, τ ; x ′, τ ′)], (28)

and(
∂

∂τ
+ iv f

∂

∂x

)
GII,I

↑1 (x, τ ; x ′, τ ′) = −λδ(x)[GII,I
↑1 (x, τ ; x ′, τ ′)− iGI,I

↑1(x, τ ; x ′, τ ′)]. (29)

Equations (28), (29) have to be supplemented with the set of equations of motion for GII,II
↑1 and

for GI,II
↑1 , with the replacement i → −i.

The detailed solution of equations (28), (29) is provided in appendix B. The S-matrix will
come out to be diagonal with respect to any index but the representation index, according to
the definition:

Ga,b
σα (iωm; x > 0 > x ′) =

∑
c

Sa,c
σα (iωm)G

c,b
σα(iωm; 0 > x > x ′), (30)

where ωm are the Matsubara frequencies.
From the results of appendix B, we find:

SI,I
↑1(iωm) = 1 + 2π i

λ

1 + 2λF(iωm)

SII,I
↑1 (iωm) = 2π

λ

1 + 2λF(iωm)

(31)

SII,II
↑1 (iωm) = SI,I

↑1(iωm), SI,II
↑1 (iωm) = −SII,I

↑1 (iωm). (32)

Going back to real time, we get:

F(iωm → ω + iη) = −iπ

(
1 − i

π
ln

[
D − ω

D + ω

])
,

where D is a band cutoff energy.
Finally

SI,I
↑1(ω) = SII,II

↑1 (ω) = 1 − 2λ ln
[

D−ω
D+ω

]
1 − 2π iλ − 2λ ln

[
D−ω
D+ω

] ,
SII,I

↑1 (ω) = −SI,II
↑1 (ω) = 2πλ

1 − 2π iλ− 2λ ln
[

D−ω
D+ω

] . (33)

This S-matrix is perfectly unitary in the representation space. The unitary limit is achieved
with λ → ∞. In this limit, the on-shell S matrix in the (I, II) space, Sσα(ω = 0), is given by:

Sσα(ω = 0) =
(

0 −i(σα)
i(σα) 0

)
. (34)

According to the definition of phase shift δ for elastic scattering, S = e2iδ , we obtain
the corresponding phase shift in the various channels, in the unitarity limit, given by
δI II
↑1 (ω = 0) = −π

4 , δII I
↑1 (ω = 0) = π

4 . In the one channel spin-1/2 Kondo effect, the
phase shift is δσ = π

2 .
The appearance of matrix elements that are off-diagonal in the representation index avoids

the unitarity paradox, at the price of alleging scattering processes swapping the representation,
corresponding to changing the spin-flavour quantum number by ±2.
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The derivation above also provides the boundary conditions for the bosonic fields 	X

(X = ch, sp,fl, sf) at the origin. As x crosses the location of the scattering centre (x = 0),
none of the field changes, but 	sf , according to:

	sf(x) → −	sf(x) + π. (35)

In the following sections, we abandon the I, II-representation, and define the physical
conduction states in fermionic coordinates. To do so, we must derive the irrelevant operators
providing the leading corrections to the T = 0 limit of the scattering dynamics.

5. The first irrelevant correction to the fixed-point Hamiltonian, physical states and the
unitary limit of the conductance

In the previous sections, when bosonizing the fermionic fields, we stressed the representation
redundancy associated with the spin-flavour quantum number. Such a redundancy does not
affect the physical validity of the bosonization procedure, as both representations possess
the same observable quantum numbers. However, it must be taken care of, somehow, when
characterizing the fermionic Fock space for delocalized particles. To recognize what the
physical fermionic conduction states are, we have to discuss the first irrelevant correction to
the fixed point Hamiltonian H 2CK

λ in equation (26). In order to do so, we will first go back to
bosonic coordinates, and then derive the first irrelevant correction to the bosonic fixed point
Hamiltonian H 2CK

K of equation (4), by building the perturbation theory about the fixed point,
that is, by assuming the boundary conditions in equation (35), and by applying the Schrieffer–
Wolff procedure to compute the various operators.

Irrelevant corrections arise when the kinetic energy term is added to H 2CK
K , and high energy

states with a localized triplet at the impurity are alleged to take part in the scattering process as
virtual states (each singlet state has an energy ES = −9J/4, and each triplet one has energy
ET = 7J/4, see appendix C for details).

To start the derivation, let us notice that, as we show in equation (14), the Kondo interaction
Hamiltonian only contains spin and spin-flavour bosonic fields. Therefore, we may factorize
out both charge and flavour fields, and write the kinetic energy in the ‘reduced’ bosonized
form:

HRed = v f

4π

[∫
dx

∑
X=sp,sf

(
d	X

dx
(x)

)2]
. (36)

This factorization might be thought of as an artifact of the long-wavelength expansion, and it
may be possible that, during the renormalization procedure, some terms arise, coupling charge
and flavour to the remaining degrees of freedom. However, we will assume that such terms
are irrelevant anyway at low enough temperature.

Using the Schrieffer–Wolff procedure, we take as the lowest-energy subspace the one
spanned by the singlets |Sin, A, {�}〉, |Sin, B, {�}〉, and we construct an effective Hamiltonian
as a perturbative expansion in t2/J . Defining the projector onto the lowest-energy subspace
as:

P0 =
∑

u=A,B

|Sin, u, {�}〉〈Sin, u, {�}|, (37)

the effective Hamiltonian, up to terms O(t3/J 2), is:

HEff ≈ P0(HRed + HK)P0 + P0

{
1

ES − ET
[HRed[1 − P0]HRed]

+

(
1

ES − ET

)2

[HRed[1 − P0]HRed[1 − P0]HRed]

}
P0. (38)
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In this section we focus on the first term on the rhs of equation (38), P0(HRed + HK)P0.
In appendix C, we derive the action of HRed in the discrete lattice model, where HRed is
substituted by the corresponding lattice operator, HT,Red (see appendix C for details). When
computing matrix elements of HT,Red between different impurity states, we include only the
impurity neighbouring sites (which is equivalent in spirit to Wilson’s NRG approach), and use
the symbol hT when referring to the corresponding operator. We show that, once projected on
the space of the singlets, the corresponding hopping term takes the form:

P0 HRedP0 → − 1
2 tQ0(Qa + Q−a)Q0. (39)

When written in terms of fermionic fields, the operator in equation (39) contains
contributions that are off-diagonal in the I, II representation. However, in the continuum
limit a → 0, such terms just add up to the scattering potential in equation (26), so that they can
be accounted for by substituting λ → λ− t . This has no consequence on the developments of
section 4, because λ → ∞ at the end, but shows that states I and II have to be properly mixed
by hopping at any distance from the impurity.

We recognize that the corresponding physical requirement is that Qx commutes with the
Hamiltonian not just at the origin, but at any point x . Hence, physical states can be constructed
by using the projection operators given by:

P± = 1√
2

∏
x

(1x ± Qx) (40)

and by requiring that physical one-particle states are unaffected under, for instance, application
of P+. These states are given by:

|phys+, σα〉x = 1√
2

[c†,I
σα(x)− i(σα)c†,II

σα (x)]|0〉. (41)

(The other set of one-particle physical states, |phys−, σα〉x , is obtained by changing i → −i.)
Therefore, the transformation matrix U that maps the I, II-representation onto the basis of

the physical states, is:

U =
(

1/
√

2 −i/
√

2
1/

√
2 i/

√
2

)
.

U transforms the S matrix of equation (34) as follows:

U†SσαU =
( −1 0

0 0

)
. (42)

As we have projected onto just one of the two possible sets of physical even symmetry
states, we find an S matrix for the even states which has just one non-vanishing element (that
is −1, implying that also the even wavefunction has a node at the origin, as it must be in the
unitary limit). The other possible physical states decouple from the scattering dynamics. Had
we chosen the other set of states, the transformed matrix would have, instead, only the bottom
diagonal element different from 0.

At this point we have to recall that this result refers to the even-parity wave. In fact, we
get full transmission for both parities l = e, o, because the S-matrix is diagonal in the basis of
physical states, and the matrix elements are given by S(+),l = −1, for both parities l = (e, o).
The transmission across the impurity is given by the trace [35]:

T = Tr(+)

{∣∣∣∣ 1
2

∑
l

S(+),l
∣∣∣∣
2}

= Tr(+){1}. (43)
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Here Tr(+) means tracing over all physical degrees of freedom σ, α. Although the system
possesses four degrees of freedom, they are shared by the two physical ±-ground states. In
fact, there is a Z2 symmetry breaking in this system. Hence Tr(+){1} = 2.

By applying Landauer formula to equation (43), we obtain the correct conductivity in the
unitary limit:

G̃ = e2

h

1

2
Tr(+)

{∣∣∣∣1

2

∑
l

S(+),l
∣∣∣∣
2}

= 2e2

h
. (44)

This corresponds to the halving of the zero-point entropy of the ground state, which turns to
be 1/2 ln(2) for each ground state.

The fractionalization of the degrees of freedom can be understood also within the (I, II)
representation for the S-matrix given in equation (34). One can think of closing the line onto
itself in a symmetrical ring geometry, with two equal impurities at opposite sites. In this
representation, in the upper branch we have propagation of type-I forward scattering into type
II across one impurity, while in the lower branch the scattering is back, II → I, across the
other impurity. Each process gives rise to a phase shift at ω = 0, given by δe = ±π/4. The
conductance across each impurity is G̃ = 2×2× e2

h sin2 δe = 2 e2

h , where the first factor comes
from the spin degrees of freedom, while the second one comes from the number of channels.
Thus, the unitary limit is again obtained.

6. Leading finite-T corrections to the unitary conductance

In this section we will explicitly write down finite-T corrections to the fixed point conductance,
coming from higher-order corrections to the fixed point Hamiltonian, (that is, from operators
arising in the perturbative expansion of equation (38)). In appendix C we derive term by
term the contributions to equation (38), up to third order. The matrix elements of the various
operators in the basis of the singlets |Sin, u, {�}〉, (u = A, B) form a 2 × 2 operator matrix,
acting on the two low-energy singlets. Eventually, we will restrict them to the subset of physical
states defined in the previous section.

In particular, in this section we will derive finite-frequency contributions to the fermionic
S-matrix. These will come out to be ∝√

ω, which shows the NFL-nature of the corresponding
ground state [11]. Vertex corrections provide higher-order contributions, which we will not
consider here.

Following the derivation of appendix C, we see that, to O(t2/J ), we obtain the following
matrix elements:

M2
AB = M2

B A = 0; M2
AA = M2

B B = 2t2

E − 7
4 J

≈ − t2

2J
. (45)

These terms provide just an over-all trivial shift of each energy eigenvalue by a constant amount
O(t2). Non-trivial effects, instead, arise from the third-order corrections.

From the calculations reported in appendix C, we see that:

M3
AA = M3

B B = 0; M3
AB = t3

π J 2
sin[	sf(0)]

d	sp(0)

dx
(46)

plus terms O(t2/J ) (and higher) that renormalize the ones considered before.
The third-order correction in equation (46) is not affected by the physicality constraint

because of the operational relation: [
∏

x Qx , sin[	sf(x)]] = 0. Since M3 changes by ±1
the spin-flavour, the corresponding diagonal (in I, II) contributions to the fixed-point Green
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functions will be zero. Instead, it gives an O(t3/J 2) off-diagonal correction to GI,II
↑1 . In the

interaction representation it reads:

δGI,II
σα,σ ′α′(x, τ ; x ′, τ ′) =

∫ β

0
dτ1Tr{e−βH0 Tτ [φI

σα(x, τ )WInt(τ1)φ
†,II
σα (x

′, τ ′)]}δσσ ′δαα′ . (47)

Computing the trace of equation (47) requires using the bosonic representation for the operators
φI,II provided in equation (22). In bosonic coordinates, WInt(τ1) is defined as:

WInt(τ1) = t3

π J 2
eτ1 Hfp

{
: sin[	sf(0)]:

d	sp

dx
(0)

}
e−τ1 Hfp . (48)

Two independent periods appear in the Green functions: the length L and the inverse
temperature β. A rigorous calculation of the correlators in equation (47) would require the
introduction of Jacobi’s elliptic θ -functions. However, here we will attempt to compute just
the finite-frequency corrections at T = 0. Therefore, we shall approximate equation (47) as:

δGI,II
σα (x, τ ; x ′, τ ′) = t3

π J 2

∫ ∞

0
dτ1〈:e− i

2	ch(x,τ ): :e
i
2	ch(x′,τ ′):〉〈:e−α i

2	fl(x,τ ): :eα
i
2	fl(x′ ,τ ′)〉

×
〈
:e−σ i

2	sp(x,τ )
∂	sp

∂x
(0, τ1):eσ

i
2	sp(x′,τ ′):

〉

× 〈:e+σα i
2	sf (x,τ ): :sin[	sf(0, τ1)]: :e−σα i

2	sf (x′,τ ′)〉, (49)

where 〈· · ·〉 denotes ground state average. As shown in appendix D, for the case {σα} = {↑ 1}
and in the limit of T = 0 and large L, equation (49) provides the result:

δGI,II
↑1 (iωm; x, x ′) = − t3

J 2v
3
2
f

√
ω

πv f
e

i ω
v f
(x−x′ )

(50)

with x − x ′ > 0. In equation (50), we have performed the analytic continuation to real
frequencies for the retarded Green function: ωm → −iω.

Introducing in equation (50) the Kondo temperature as the relevant physical energy scale
according to the substitution: t3

2π3/2v f J 2 → 1√
TK

, we obtain a leading finite-frequency correction

that goes as ω
1
2 , in agreement with the results obtained in [11]. In particular, we have found a

finite-ω correction to the S matrix given by:

δSσα(ω) =
[

0 i(σα)
√

|ω|
TK

−i(σα)
√

|ω|
TK

0

]
. (51)

By projecting the result of equation (51) on the basis of physical states, we get:

U†[Sσα + δSσα]U =
[−1 +

√
|ω|
TK

0

0 0

]
. (52)

As a side remark, let us consider the case of a QD hybridized to metal contacts by a
tunnelling potential V . If we use the relations found within the Anderson model [37], we find
the width of the Kondo resonance to be given by: � = 4kB TK

π
= πν(0)|V |2, where V is the

tunnelling strength and ν(0) = 2π/v f is the density of states at the Fermi level. This implies,

in our case, that |V | = J 2

t3

√
2πv3

f .

By using the result in equation (52), we compute the finite-energy transmission:

T(ω, T = 0) = Tr(+)

{∣∣∣∣1

2

∑
l

[S(+),l + δS(+),l ]

∣∣∣∣
2}

= 2

(
1 − 1

2

∣∣∣∣ ωTK

∣∣∣∣
1
2
)
. (53)
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Finally, in order to obtain from equation (53) finite-temperature dependence of the
conductance, we have to recall that, at finite temperatures, there are two contributions to the
conductance: one arising from the smearing of the Fermi surface, the other from the inelastic
processes. In fact, for the large U Anderson model, the explicit dependence of the transport
time on temperature at the Fermi energy has to be taken into account separately [37]. This
gives:

G̃(T )= e2

h

∫
dω

(
−∂ f (ω)

∂ω

)
T(ω, T )= 2e2

h
β

∫ ∞

−µ
dω

eβω

(1 + eβω)2

[
1 − 1

2

∣∣∣∣ ωTK

∣∣∣∣
1
2
]

+ ∆(µ, T )

≈ 2e2

h

[
1 −

√
3π

8

√
T

TK

]
(54)

where f (ω) is the Fermi distribution, and ∆ is the total contribution coming from inelastic
processes, which we neglect here, as it is assumed to provide corrections that are higher order
than

√
T . Equation (54) contains the ultimate result of our derivation: the calculation of the

fixed-point contribution to the conductance, together with the leading finite-T correction, and
the elucidation of the connection between this correction and the various scattering processes
that take place at the fixed point. As we have already mentioned, our formalism allows also
for calculating the inelastic term arising from vertex corrections, but we will not consider them
here.

7. Conclusions

In this paper, we use the Landauer formula to derive the conductance at the two channel spin
1/2 overscreened Kondo fixed point, together with leading finite-temperature corrections. We
perform our calculations within the framework of our simple Hamiltonian theory, in which
we derive a suitable fermionic representation of the S-matrix, by using bosonization as an
intermediate step. In order for us to achieve such apparently simple results, we had to go
through various mathematical approaches, which are used in the literature to analyse different
aspects of the overscreened Kondo problem [11, 27, 34]. For instance, we had to complement
the regularization scheme introduced in [27] with the bosononization technique widely used
in [11], and with the careful discussion about the role of the spin-flavour quantum number
in [34].

Our research is motivated by the renewed interest in the Kondo model, which has recently
arisen in connection with conductance experiments across QDs. In general, using simple
models for correlated electrons, like the Anderson model, allows for grasping the physics
involved in tunnelling experiments across confined areas between two contacts, as well as
across Coulomb blockaded systems (like the QD device we have in mind). Recently, efforts
have been made to achieve an exact description of transport also in the non-equilibrium case,
starting from the integrability of the two-lead Anderson model [36], which confirms previous
numerical RG results [23]. Despite the exactness of these results, they are unsuitable for our
case, as they refer to the Fermi liquid 1CK fixed point.

Recently, various groups have been predicting that 2CK could be realized in QD systems.
In particular, we have proposed that the orbital 2CK effect may arise in a vertical structure
with cylindrical symmetry around an applied magnetic field [16].

In our proposal, the dynamical degrees of freedom involved in the scattering across the
interacting dot are provided by an appropriate combination of the transverse angular momentum
of lead electrons, m, and of their spin, σ . The single particle wavefunction of the delocalized
electrons travelling along the z direction has an orbital part factorized in the cross-sectional
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plane. In a linearized band picture and close to the Fermi energy εF, their wavefunction of
energy ε and parity l w.r.t. z = 0 is:

ψ l
ε∼εF ,q,m,σ (ρ, θ; z) = (sgn z)lei(kF+q)|z|ϕδ≈0,m(ρ)eimθχσ , (55)

where δ = ε − h̄vF|q|, and χσ is the spin wavefunction.
Another proposal is based on the use of an additional lateral QD to tune the exchange

coupling to the channels to the isotropic point [17]. In such a geometry, however, even a
small anisotropy in the coupling to the channels is enough to drive, at low enough T , the
system from the 2CK fixed point to a 1CK channel fixed point, with strong coupling only
in the dominant channel [38]. This problem does not arise in [16], because of the assumed
cylindrical symmetry. This symmetry does not allow for any off-diagonal coupling mixing the
two channels, because it enforces the angular momentum selection rule in the cross plane. Of
course it is very demanding to produce such a strictly cylindrical system experimentally.

These proposals have triggered a renewed interest in 2CK transport. On the theoretical
side, reconsideration of the matter is relevant in view of the particular kind of devices involved
in the proposed experiments. Indeed, the scattering approach used in [11], in conjunction with
CFT techniques, is better suited for the single impurity s-wave scattering in a three-dimensional
medium than for a two-lead device. In [18], the authors identify the two-channel Kondo fixed
point as a quantum critical point between two Fermi liquid phases, and derive its dependance
on external parameters such as temperature, magnetic field and voltage bias accordingly.

For the purpose of understanding the physics of the transport across mesoscopic devices,
we believe our approach to be a straight connection between the physics of the overscreened
Kondo problem at the fixed point and its physical consequences. In a clear and easy-to-follow
framework that extends Nozières’ hypothesis, it sheds light on the physical processes that
happen at the impurity as T → 0, and relates them to the macroscopically detectable non-
Fermi liquid behaviour in the T -dependenceof the conductance. The GS at the NFL fixed point
is found to be degenerate. Because the physical system only involves one of these GSs and
its corresponding excitations, the contribution of each degree of freedom to the conductance
is halved. As discussed in section 4, this leads to the same unitary limit of the conductance
as in the one channel case. Finally, our approach might also provide an alternative route to
investigate the effect of anisotropy on the conductance.
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Appendix A. Basic bosonization steps

In this appendix we will review some basic bosonization steps, which will allow us to write
down fermionic fields in terms of bosonic operators.

In order to write fermionic fields in bosonic coordinates, let us introduce a massless scalar
bosonic field 	(x), given by:

	(x) = q +
2π

L
px + i

∑
n 	=0

αn

n
e− 2π i

L (nx−i|n| η2 ) (A.1)

where η ≡ 0+ is a regularizer.
The algebra of the bosonic modes is:

[q, p] = i; [αn, αm] = nδn+m,0. (A.2)
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Therefore, we may split	(x) into a creation and an annihilation part,	(x) = 	+(x)+	−(x),
with

	+(x) = q − i
∞∑

n=1

α−n

n
e

2π in
L x− πn

L η; 	−(x) = 2πx

L
p + i

∞∑
n=1

αn

n
e

−2π in
L x− πn

L η (A.3)

and

[	−(y),	+(x)] = − ln(e
2π in

L y − e
2π in

L (x+iη)). (A.4)

The ground state of the Fock space spanned by the bosonic modes, |bvac〉, is defined by:

p|bvac〉 = αn|bvac〉 = 0 (n > 0). (A.5)

A fermionic field may be defined as

c†(x) = :ei	(x): (A.6)

where the columns : : denote normal ordering with respect to |bvac〉.
Indeed, by using the general identity

eAeB = eBeAe[A,B],

which holds if [A, B] is a number, one gets:

:eiα	(x): :e−iβ	(y): = ei[α	+(x)−β	+(y)]ei[α	−(x)−β	−(y)]
[

1

(e
2π i
L x − e

2π i
L (y+iη))αβ

]
. (A.7)

As α, β = ±1 and x 	= y, we get:

c(x)c(y) + c(y)c(x) = c(x)c†(y) + c†(y)c(x) = 0. (A.8)

On the other hand, by properly regularizing the anticommutator, while as x → y the
anticommutator between c(x) and c(y) remains equal to 0 (as well as the anticommutator
between c†(x) and c†(y)), one gets:

c(x)c†(y) + c†(y)c(x) = δ

[
x − y

L

]
. (A.9)

The density operator at a point x may be expressed in bosonic coordinates by means of
the ‘point-splitting regularization’ as follows:

ρ(x) = lim
y→x

:{:ei	(y): :e−i	(x):}: = 1

2π

d	(x)

dx
. (A.10)

The free kinetic Hamiltonian may also be written in a bosonized form as follows:

HT = −iv f

∫
dx :ei	+(x)ei	−(x) d

dx
[e−i	+(x)e−i	−(x)]: = v f

4π

∫
dx

[
d	(x)

dx

]2

. (A.11)

When fermions carry several quantum numbers (spin, flavour), bosonizing requires first of
all introducing many bosonic fields	X. Also, in order to make fermions with different quantum
numbers anticommute, one has to introduce a ‘Klein factor’ ησα in front of each bosonized
field. In general, one chooses ησα to be a real Majorana fermion, that is, (ησ,α)2 = 1 [19]. As
a consequence, fermionic operators defined as

cσα(x) = ησα:e− i
2 [	ch(x)+σ	sp(x)+α	fl(x)+ασ	sf (x)]:;

c†
σα(x) = ησα:e

i
2 [	ch(x)+σ	sp(x)+α	fl(x)+ασ	sf (x)]:

(A.12)

anticommute with each other for different quantum numbers, as they must do.
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The following commutation relation holds:[
1

2π

d	(x)

dx
, :eiα	(y):

]
= αδ(x − y):eiα	(y):. (A.13)

By using only one bosonic field 	(x) it is possible to build an SU(2) spin-current �j(x). The
components of the vector current density are given by:

j±(x) = 1√
2

:e±i
√

2	(x):; jz(x) = 1

2π

d	

dx
(x). (A.14)

Indeed, according to equation (A.7), in the case α = β = √
2, and to equation (A.13), we

obtain:

[ j+(x), j−(y)] = i
L

2π
δ′(x − y) + δ(x − y) j z(y) (A.15)

and

[ j z(x), j±(y)] = ±δ(x − y) j±(y). (A.16)

Equations (A.15), (A.16) provide us with the usual SU(2) affine algebra obeyed by the
spin-density operator.

This, in particular, proves that the operators ��A(x) and ��B(x)we defined in section 3 are
SU(2) spin current operators.

The corresponding spinors at a point x may be created by acting |bvac〉 with :e± i
2 [	sp+	sf ](x):

and :e± i
2 [	sp−	sf ](x):, respectively. Let us define:

|σ ; A〉x ≡ [:eσ
i
2 [	sp+	sf ](x):]|bvac〉; |σ ; B〉x ≡ [:eσ

i
2 [	sp−	sf ](x):]|bvac〉. (A.17)

The following commutation relations hold (either the upper or the lower signs hold):

[�±
A (x), :e± i

2 [	sp+	sf ](y):] = [�±
B (x), :e± i

2 [	sp−	sf ](y):] = 0 (A.18)

and

[�±
A (x), :e∓ i

2 [	sp+	sf ](y):] = δ(x − y):e± i
2 [	sp+	sf ](y):;

[�±
B (x), :e∓ i

2 [	sp−	sf ](y):] = δ(x − y):e± i
2 [	sp−	sf ](y):.

(A.19)

Finally

[�z
A(x), :e± i

2 [	sp+	sf ](y):] = ± 1
2δ(x − y):e± i

2 [	sp+	sf ](y):;
[�z

B(x), :e± i
2 [	sp−	sf ](y):] = ± 1

2δ(x − y):e± i
2 [	sp−	sf ](y):.

(A.20)

The set of equations listed above shows that the doublet |σ, A〉 provides a spinor
representation of the SU(2) group generated by ��A, and that the doublet |σ, B〉 provides
a spinor representation of the SU(2) group generated by ��B .

To conclude this appendix, let us now prove that fermionic fields belonging to two different
representations anticommuting with each other.

Let us start from the fields in the two representations expressed in bosonic coordinates:

φI
σα(x) = ησα:e− i

2 [	ch(x)+σ	sp(x)+α	fl(x)+ασ	sf (x)]: (A.21)

and

φII
σα(x) = ησα:e− π i

2 Ñσα e− i
2 [	ch(x)+σ	sp(x)+α	fl(x)−ασ	sf (x)] :, (A.22)

where the Klein factors ησα are given by real Majorana variables.
Clearly, fields within the same representation anticommute:

{φA
σα(x), φ

A†
σ ′,α′(y)} = δσσ ′δαα′δ(x − y). (A.23)
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Let us, now, consider fields from the two different representations. Let us start with two
annihilation field operators (in the case {σα} 	= {σ ′α′}):
{φI
σα(x), φ

II
σ ′α′(y)} = ησαησ ′α′ {e− iπ

4 [1+σσ ′+αα′−σσ ′αα′][e
2π ix

L − e
2π iy

L ]
1
4 [1+σσ ′+αα′−σσ ′αα′]

− [e
2π iy

L − e
2π ix

L ]
1
4 [1+σσ ′+αα′−σσ ′αα′]}

× :exp

[
− i

2
[	ch(x) +	ch(y) + σ	sp(x) + σ ′	sp(y)

+ α	fl(x) + α′	fl(y)− ασ	sf(x)− α′σ ′	sf(y)]

]
: = 0. (A.24)

By following the same procedure, we obtain the result:

{φI†
σα(x), φ

II†
σ ′α′(y)} = 0 (A.25)

and the anticommutation relations:

{φI
σα(x), φ

II†
σ ′α′(y)} = ησαησ ′α′ {e iπ

4 [1+σσ ′+αα′−σσ ′αα′][e
2π ix

L − e
2π iy

L ]−
1
4 [1+σσ ′+αα′−σσ ′αα′]]

− [e
2π iy

L − e
2π ix

L ]−
1
4 [1+σσ ′+αα′−σσ ′αα′]]}

× :exp

[
− i

2
[	ch(x)−	ch(y) + σ	sp(x)− σ ′	sp(y)

+ α	fl(x)− α′	fl(y)− ασ	sf(x) + α′σ ′	sf(y)]

]
: = 0 (A.26)

and

{φI†
σα(x), φ

II
σ ′α′(y)} = 0, (A.27)

that complete the proof of the identities used throughout the paper.

Appendix B. Calculation of the fixed point Green functions

In this appendix we will show in detail how to calculate the fixed point Green functions with
the method of the equations of motion. Within our framework, this will come out to be a
straightforward application of one-dimensional scattering theory.

The equations of motion for GI,I
↑1 and GII,I

↑1 are reported in section 4 and are given by:(
∂

∂τ
− iv f

∂

∂x

)
GI,I

↑1(x, τ ; x ′, τ ′) = δ(τ − τ ′)δ(x − x ′)

− λδ(x)[GI,I
↑1(x, τ ; x ′, τ ′) + iGII,I

↑1 (x, τ ; x ′, τ ′)] (B.1)

and(
∂

∂τ
− iv f

∂

∂x

)
GII,I

↑1 (x, τ ; x ′, τ ′) = −λδ(x)[GII,I
↑1 (x, τ ; x ′, τ ′)− iGI,I

↑1(x, τ ; x ′, τ ′)]. (B.2)

To solve the set of equations (B.1), (B.2), let us introduce the Green functions in the mixed
representation:

G AB
↑1 (x, τ ; x ′, τ ′) = 1

β

∑
iωm

∫
d p e−iωmτeipx G AB

↑1 (iωm, p; x ′). (B.3)

In the mixed representation, the equations of motion become:

(−iωm + v f p)GI,I
↑1(iωm, p; x ′) = e−ipx′ − λ

∫
dq [GI,I

↑1(iωm, q; x ′) + iGII,I
↑1 (iωm, q; x ′)]

(B.4)
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and

(−iωm + v f p)GII,I
↑1 (iωm, p; x ′) = −λ

∫
dq [GII,I

↑1 (iωm, q; x ′)− iGI,I
↑1(iωm, q; x ′)]. (B.5)

The solution to the set of equations (B.4), (B.5) is given by:

GI,I
↑1(iωm, p; x ′) = e−ipx′

−iωm + v f p
− 1

−iωm + v f p

[
λ′

1 + 2λ′F(iωm)

]
v f

∫
dq

(
e−iqx′

−iωm + v f q

)
(B.6)

and by

GII,I
↑1 (iωm, p; x ′) = 1

−iωm + v f p

[
iλ′

1 + 2λ′F(iωm)

] ∫
dq v f

(
eiqx′

−iωm + v f q

)
(B.7)

where λ′ = λ/v f and F(iωm) is defined as:

F(iωm) = v f

∫
d p

1

−iωm + v f p
= ln

[
D + iωm

−D + iωm

]
. (B.8)

In equation (B.8), D is a high-energy band cutoff.
In order to derive the S-matrix elements, in section 4 we use the real space Green functions

for x > 0 and x ′ < 0 in the limit λ′ → ∞. In the case ωm > 0 they are

GI,I
↑1(iωm; x, x ′) =

∫
d p eipx GI,I

↑1(iωm, p; x ′) = 2π i

v f
θ(ωm)

[
1 − 2π i

1

2F(iωm)

]
e
− ωm

v f
(x−x′ )

(B.9)

and

GII,I
↑1 (iωm; x, x ′) =

∫
d p eipx GII,I

↑1 (iωm, p; x ′) = 2π i

v f
θ(ωm)

[
2π i

i

2F(iωm)

]
e
− ωm

v f
(x−x′ )

.

(B.10)

The ‘non-interacting’ Green functions G(0);a,b
↑1 (iωm; x, x ′) for x − x ′ > 0 are given by:

G(0);a,b
↑1 (iωm; x, x ′) =

∫
d p

eip(x−x′ )

v f p − iωm
= 2π i

v f
θ(ωm)e

− ωm
v f
(x−x′ )

δa,b. (B.11)

From equation (B.11), we see that equations (B.9), (B.10) take the form

GI,I
↑1(iωm; x, x ′) = G(0);I,I

↑1 (iωm; x, x ′)
[

1 − 2π i
λ′

1 + 2λ′F(iωm)

]
(B.12)

and

GI,I
↑1(iωm; x, x ′) = G(0);I,I

↑1 (iωm; x, x ′)
[

2π i
iλ′

1 + 2λ′F(iωm)

]
. (B.13)

From equations (B.12), (B.13), we derive the S matrix elements in section 4.

Appendix C. Action of HT on the various states

In this appendix, we show in detail how hT acts on the states arising from hybridization of the
impurity spin with the spin of itinerant lead electrons. This is the mathematical support to the
derivation of section 5, where we use the results of this appendix to derive leading corrections
to the fixed-point Hamiltonian.
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The triplet states are:

|Tri, A, 1, {�}〉 = |↑, A, {�}〉 ⊗ |⇑〉; |Tri, B, 1, {�}〉 = |↑, B, {�}〉 ⊗ |⇑〉;
|Tri, A,−1, {�}〉 = |↓, A, {�}〉 ⊗ |⇓〉; |Tri, B,−1, {�}〉 = |↓, B, {�}〉 ⊗ |⇓〉;
|Tri, A, 0, {�}〉 = 1√

2
[|↑, A, {�}〉 ⊗ |⇓〉 + |↓, A, {�}〉 ⊗ |⇑〉];

|Tri, B, 0, {�}〉 = 1√
2

[|↑, B, {�}〉 ⊗ |⇓〉 + |↓, B, {�}〉 ⊗ |⇑〉].

(C.1)

Let us introduce the lattice operators bX given by:

bX (x) ≡
√

2πη

L
:e−iφX (na):; X = sp, sf . (C.2)

To start the derivation, let us rewrite HRed in a lattice form, by using the operators bsp, bfl.
We get the reduced lattice kinetic energy operator HT,Red, given by:

HT,Red =
∑

x,X=sp,sf

{b†
X (x)bX (x)− t[b†

X (x)(bX (x + a) + bX (x − a))

+ (b†
X (x + a) + b†

X (x − a))bX (x)]}. (C.3)

From the operator in equation (C.3), we may single out the term that acts on the Fock
spaces of the states formed by hybridization between the spin of the localized impurity at the
origin, and the spin of conduction electrons at x = ±a. Such a term is given by:

hT = −t
∑

X=sp,sf

[b†
X (0)(bX (a) + bX (−a)) + (b†

X (a) + b†
X (−a))bX(0)].

The action of hT on the singlets is given by:

hT|Sin, A〉 = t√
2
{[bsp(a) + bsp(−a)]|Tri, B, 1〉 − [b†

sp(a) + b†
sp(−a)]|Tri, B,−1〉}

− t

2
[bsf(a) + bsf(−a) + b†

sf(a) + b†
sf(−a)]|Sin, B〉

+
t

2
[bsf(a) + bsf(−a)− b†

sf(a)− b†
sf(−a)]|Tri, B, 0〉 (C.4)

and by:

hT|Sin, B〉 = t√
2
{[bsp(a) + bsp(−a)]|Tri, A, 1〉 − [b†

sp(a) + b†
sp(−a)]|Tri, A,−1〉}

− t

2
[bsf(a) + bsf(−a) + b†

sf(a) + b†
sf(−a)]|Sin, A〉

− t

2
[bsf(a) + bsf(−a)− b†

sf(a)− b†
sf(−a)]|Tri, A, 0〉. (C.5)

When acting on the triplet states, instead, hT provides the following results:

hT|Tri, A, 1〉 = −t[b†
sf(a) + b†

sf(−a)]|Tri, B, 1〉 +
t√
2

[b†
sp(a) + b†

sp(−a)]|Sin, B〉

− t√
2

[b†
sp(a) + b†

sp(−a)]|Tri, B, 0〉 (C.6)

hT|Tri, B, 1〉 = −t[bsf(a) + bsf(−a)]|Tri, A, 1〉 +
t√
2

[b†
sp(a) + b†

sp(−a)]|Sin, A〉

− t√
2

[b†
sp(a) + b†

sp(−a)]|Tri, A, 0〉 (C.7)
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hT|Tri, A,−1〉 = −t[bsf(a) + bsf(−a)]|Tri, B,−1〉 − t√
2

[bsp(a) + bsp(−a)]|Sin, B〉

− t√
2

[bsp(a) + bsp(−a)]|Tri, B, 0〉 (C.8)

hT|Tri, B,−1〉 = −t[b†
sf(a) + b†

sf(−a)]|Tri, A,−1〉 − t√
2

[bsp(a) + bsp(−a)]|Sin, A〉

− t√
2

[bsp(a) + bsp(−a)]|Tri, A, 0〉 (C.9)

hT|Tri, A, 0〉 = − t√
2
{[bsp(a) + bsp(−a)]|Tri, B, 1〉 + [b†

sp(a) + b†
sp(−a)]|Tri, B,−1〉}

− t

2
{[bsf(a) + bsf(−a) + b†

sf(a) + b†
sf(−a)]}|Tri, B, 0〉

− [bsf(a) + bsf(−a)− b†
sf(a)− b†

sf(−a)]|Sin, B〉} (C.10)

hT|Tri, B, 0〉 = − t√
2
{[bsp(a) + bsp(−a)]|Tri, A, 1〉 + [b†

sp(a) + b†
sp(−a)]|Tri, A,−1〉}

− t

2
{[bsf(a) + bsf(−a) + b†

sf(a) + b†
sf(−a)]}|Tri, A, 0〉

+ [bsf(a) + bsf(−a)− b†
sf(a)− b†

sf(−a)]|Sin, A〉}. (C.11)

The equations listed above are all we need in order to work out subleading corrections to
the fixed point Hamiltonian.

We apply the Schrieffer–Wolff transformation introduced in equation (38) by including just
the hopping term between sites nearest neighbours of the impurity. The effective perturbative
potential is:

VEff ≈ P0

{
(hT + HK) +

1

ES − ET
[hT[1 − P0]hT]

+

(
1

ES − ET

)2

[hT[1 − P0]hT[1 − P0]hT]

}
P0. (C.12)

The first term on the rhs of equation (C.12), can be expressed in terms of the operators Q0

and Q±a , leading to the equation (39).
The O(t2/J ) of equation (C.12) provides the following matrix elements:

M2
AB = M2

B A = 0; M2
AA = M2

B B = 2t2

E − 7
4 J

≈ − t2

2J
. (C.13)

Therefore, on |Sin,±, {�}〉, second-order (in t) dynamics just yields an overall trivial
shift of each energy eigenvalue by a constant amount.

Non-trivial, effects, instead, arise from third-order corrections. Indeed, while we have
once more:

M3
AA = M3

B B = 0, (C.14)

on the other hand, we obtain:

(4J )2 M3
AB =

∑
X X ′

〈Sin, A, {�}|hT|EX 〉〈EX |hT|EX ′ 〉〈EX ′ |hT|Sin, B〉

= −3t3

4
(bsf(a) + bsf(−a) + b†

sf(a) + b†
sf(−a))− t3

4
[(bsp(a) + bsp(−a)),

(b†
sp(a) + b†

sp(−a))](bsf(a) + bsf(−a)− b†
sf(a)− b†

sf(−a)), (C.15)

where |EX 〉 is a generic high-energy triplet.
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From equation (C.15), we see that M3
AB contains a contribution proportional to the term

we found to O(t). Therefore, it may be accounted for by means of a slight renormalization of
λ′, that is O(t3/J 2) and is absolutely irrelevant. Since this effect is trivial, we will not consider
it here. The non-trivial part of the correction operator can be derived by recalling the basic
bosonization rules listed in appendix A. In particular, we obtain the following expression for
the commutator in equation (C.15):

[(b†
sp(a) + b†

sp(−a)), (bsp(a) + bsp(−a))] = 1

π

d	sp(0)

dx
. (C.16)

Therefore, taking the limit a → 0 in the regular part of the result in equation (C.15), we
get the result:

M3
AB = M3 = t3

π J 2
sin[	sf(0)]

d	sp(0)

dx
(C.17)

plus the irrelevant terms discussed before.

Appendix D. Calculation of leading finite-frequency corrections to the S-matrix

In this appendix, we will show in detail how to calculate leading finite-frequency corrections
to the S-matrix. To do so, first of all, let us recall what the relevant correlators we need are.
We may calculate them according to the basic bosonization rules of appendix A (and to the
fact that all the involved fields are chiral). We obtain:

〈Tτ [:e− i
2	(x,τ ): :e

i
2	(x

′,τ ′):]〉 = 1[
e

2π i
L (x+iv f τ) − e

2π i
L (x

′+iv f τ
′)] 1

4

(D.1)

(this will provide us with the charge–charge and the flavour–flavour part of the relevant
correlator).

Moreover, we get:〈
Tτ

[
:e− i

2	sp(x,τ ):
∂	sp(0, τ1)

∂x
:e

i
2	sp(x′,τ ′):

]〉

= −π
L

e
2πv f

L τ1 [e
2π i
L (x+iv f τ) − e

2π i
L (x

′+iv f τ
′)]

3
4

[e
−2πv f

L τ1 − e
2π i
L (x+iv f τ)][e

−2πv f
L τ1 − e

2π i
L (x

′+iv f τ
′)]
. (D.2)

Finally, we obtain:

〈Tτ [:e− i
2	sf (x,τ ): :ei	sf (0,τ1): :e− i

2	sf (x′,τ ′):]〉 = 〈Tτ [:e
i
2	sf (x,τ ): :e−i	sf (0,τ1): :e

i
2	sf (x′,τ ′):]〉

= [e
2π i
L (x+iv f τ) − e

2π i
L (x

′+iv f τ
′)]

1
4

[e
−2πv f

L τ1 − e
2π i
L (x+iv f τ)]

1
2 [e− 2πv f

L τ1 − e
2π i
L (x

′+iv f τ
′)]

1
2

. (D.3)

By putting together all the correlators in equations (D.1)–(D.3), we obtain the integral in
equation (49). To calculate the integral, we use as an auxiliary variable ξ = exp[− 2π

L v f τ ].
Therefore, after all the substitutions and the variable replacements have been made, the integral
reads:

it3

2πv f J 2

(
2π

L

) 3
2
∫ 1

0
dξ

[e
2π i
L (x+iv f τ) − e

2π i
L (x

′+iv f τ
′)]

1
2

[ξ − e
2π i
L (x+iv f τ)]

3
2 [ξ − e

2π i
L (x′+iv f τ

′)]
3
2

= it3

2πv f J 2

(2π/L)
3
2

[e
2π i
L (x+iv f τ) − e

2π i
L (x

′+iv f τ
′)]

3
2

{
[e

2π i
L (x+iv f τ) + e

2π i
L (x

′+iv f τ
′)]√

e
2π i
L (x+iv f τ)e

2π i
L (x

′+iv f τ
′)

− [e
2π i
L (x+iv f τ) + e

2π i
L (x

′+iv f τ
′)] − 2√

(e
2π i
L (x+iv f τ) − 1)(e

2π i
L (x

′+iv f τ ′) − 1)

}
(D.4)
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(notice the extra prefactor of (2π/L)
3
2 , which we have introduced in order to make the

bosonization rules of appendix A consistent with the normalization for the Green functions
introduced in appendix B).

In section 6 we point out that the integral in equation (D.4) is computed in the limit of
very large L, β. Such a limit yields the ultimate approximate formula:

it3

2πv f J 2

(
1

i

) 3
2 1

[x − x ′ + iv f τ ]
3
2

. (D.5)

When going back to (Matsubara) frequency space, we have to calculate:

it3

2πv f J 2

(
1

i

) 3
2
∫ ∞

−∞
dτ

eiωmτ

[x − x ′ + iv f τ ]
3
2

. (D.6)

The integral in equation (D.6) is calculated as follows:

it3

2πv f J 2

(
1

i

) 3
2
∫ ∞

−∞
dτ

eiωmτ

[x − x ′ + iv f τ ]
3
2

= −it3

πv f J 2

(
1

i

) 3
2 ∂

∂x

∫ ∞

−∞
ds√
π

e−s2(x−x′ )2π
∫ ∞

−∞
dτ eiτ(ωm−s2v f )

= − it3

J 2

√
ωm

πv f
(iv f )

− 3
2 θ(ωm)e

− ωm
v f
(x−x′ )

(D.7)

with x − x ′ > 0.
When rotating back to real times/frequencies, the result in equation (D.7) reads:

− t3

J 2v
3
2
f

√
|ω|
πv f

e
i ω
v f
(x−x′ )

. (D.8)

By going back to real frequency, this provides the finite-frequency correction to the S-
matrix that we have used in section 6 to derive the conductance.
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